Investigating the Role of extracellular phosphate groups in bacterial adhesion to soil minerals

Xiaoming Zhang UC Davis Kearney Fellowship Report 2009

Bacterial Adhesion

- Bacterial adhesion is important for understanding biofilm formation, pathogen and contaminant transport, and bioremediation of soil and water.
- Bacterial adhesion represents the attachment of the bacteria to solid surfaces (e.g., soil minerals).
- Minimizing bacteria adhesion is important for water treatment facilities and for reducing contaminant transport in soil and water.

Objectives

- To examine the role of functional groups within biomolecules during bacterial adhesion to Fe-oxide minerals
- To use a range of model compounds with phosphate and carboxyl groups to determine the types of biomolecules most important for bacterial adhesion to Fe-oxides

Methods

Fourier transform infrared (FTIR) spectroscopy to elucidate binding interactions between functional groups and hematite coating

All experiments verified by running the experiment a minimum of two times.

Common IR assignments for bacteria and biomolecules

Wavenumber (cm ⁻¹)	IR Band Assignment
1720-1740	v _{as} (COOH) §
1652-1637	Amide I: C=O, C-N, N-H
1570-1580	v _{as} (COO ⁻)
1550-1530	Amide II: N-H, C-N
1460-1454	δ (CH ₂) [†]
1400-1390	v _s (COO ⁻) [‡]
1220-1260	v _{as} (PO ₂ -)
1170	v(C-O)
1137	v _s (PO ₂ -)
1114-1118	v(C-O-P, P-O-P), ring vibrations
1106-1108	v _{as} (PO ₃ ²⁻) ⁻
1084-1094	$v_s(PO_2^{-})$, ring vibrations, $v(C-O)$
1078	v _s (C-O-C, C-C), v(PO ₃ ²⁻)
1048-1060	v(C-O-C, C-C)
1042-1046	v _s (PO ₃ ²⁻)
1039-1043	v(P-OH, P-O-Fe)
1016-1020	v(P-O-Fe), ring vibrations
979	v(PO ₃ ²⁻)
974	v(P-OH)
962-970	v(PO ₂ -)

§. v_{as} = asymmetric stretching vibration, \dagger . δ = bending vibrations, \ddagger . v_s = symmetric stretching vibration.

Pseudomonas sp.

Pseudomonas sp.

Gram negative bacteria

- > P. aeruginosa PAO1 wildtype
- P. putida GB-1 Mn-oxidizing strain

• Bacteria Analysis with D_2Q

- The use of D₂O permits verification of appropriate subtraction of water from FTIR spectra and reduces ambiguity of analysis in the amide region where overlapping OH bands from water are observed.
- > The band at ~1547 cm⁻¹ arises primarily from OH, the use D_2O verfied that the subtraction when water is present is correct as few other differences are observed between spectra of *P*. putida with D_2O and H_2O .

Pseudomonas sp.

• Reaction w/ a-Fe₂O₃:

- > Carboxyl Groups:
 - The downshift and relative growth in the 1350 cm⁻¹ (from 1400 cm⁻¹) indicates binding between COO⁻ and Fe
- > Phosphate Groups:
 - phosphate peak (PO₂⁻) at1238 cm⁻¹ is reduced and a new peak at ~1070 cm⁻¹ is present indicating change in coordination of phosphate group upon binding to hematite
 - increase in relative contributions of phosphate (1040-1100 cm⁻¹)
 - new peak at 1036-1041 cm⁻¹ is attributed to formation of P-O-Fe bonds

> Other peaks:

• The band at ~1450 cm⁻¹ is typically assigned to $CH_{2;}$ however, the reason for increase and shift of this peak upon reaction with a-Fe₂O₃ has not yet been determined

E. coli

E. Coli

- Gram negative bacteria
 - > Strains: 80LTS019 and 909HS D19
 - > Isolated from the California Delta
- Comparison with Pseudomonas sp.
 - Similarities in wavenumbers <1300 cm⁻¹
 - > E. Coli has increased contributions at ~1540 and 1397 cm⁻¹
- Reaction w/ a-Fe₂O₃:
 - > Carboxyl Groups:
 - relative growth of the peaks at 1394 and 1397 cm⁻¹ and a shift from 1589 to 1571 indicates some involvement of COO⁻
 - The presence of strong peaks at ~1397 cm⁻¹ likely result from unbound COO-
 - > Phosphate Groups:
 - phosphate peak (PO₂-) are reduced at1238 cm⁻¹ and a new peak at ~1067 cm⁻¹ is present indicating change in coordination of phosphate group upon binding to hematite
 - increase in relative contributions of phosphate (1041cm⁻¹)
 - new peak at 1036 cm⁻¹ is attributed to formation of P-O-Fe bonds

Model Biomolecules

Casamino Acids

Casamino Acids is a mixture of unlinked amino acids

• Casamino Acids reacted w/ a-Fe₂O₃:

> Carboxyl Groups:

- relative growth of the peak at 1402 cm⁻¹ and a shift from 1589 to 1571 indicates some involvement of COO⁻
- > Phosphate Groups:
 - phosphate peak (PO₂⁻) disappears at1238 cm⁻¹ and a new peak at 1089 cm⁻¹ is present indicating change in coordination of phosphate group upon binding to hematite
 - increase in relative contributions of phosphate (1040-1100 cm⁻¹), compared to carboxyl and amide region, are observed upon interaction with hematite
 - new peak at 1036 cm⁻¹ is attributed to formation of P-O-Fe bonds

Tryptone

 Tryptone is similar to Casamino Acid; it is a mixture of amino acids that bind through peptide bonds to form long chain polypeptides.

• Tryptone reacted w/ a-Fe₂O₃:

- > Amide Region:
 - shift of amide I occurs upon reaction with hematite (1634 to 1656 cm⁻¹)
 - change in amide I:amide II (~1640:1550 cm⁻¹) indicates change in protein conformation upon binding
- > Carboxyl Groups:
 - relative growth of the peak at 1402 cm⁻¹ indicates some involvement of COO⁻
- > Phosphate Groups:
 - new peak at 1077 cm⁻¹ (PO₂⁻) and 989 (PO₃²⁻) result from a change in coordination of phosphate group upon binding to hematite
 - increase in relative contributions of phosphate (1040-1100 cm⁻¹), compared to carboxyl and amide region, are observed upon interaction with hematite
 - new peak at 1048 cm⁻¹ is attributed to formation of P-O-Fe bonds

 Deoxyribonucleic Acid (DNA) molecules are comprised of two strands of phosophdiestercontaining nucelotides linked through H-bonding to form a double helix configuration.

• DNA reacted w/ a-Fe₂O₃:

- > Change in the amide region (1500-1700) results from autooxidation of DNA by $a-Fe_2O_3$
- The presence of numerous peaks in the carboxyl strecthing region (~1390 to 1600) also indicate cleavage of ribose ring structures
- > The carboxyl groups from oxidized DNA likely interact with a Fe $_2O_3$ to mediate binding of DNA transformation products

Conclusion

- This research demonstrates the importance of phosphate and carboxyl functional groups for adhesion of live bacteria to Fe-oxides
- The primary biomolecules on bacterial surfaces which initiate this adhesion remain unknown; however, from this and previous research it is believed that a mixture of nucleic acids, amino acids, and other biomolecules are involved.
- This research helps increases our understanding regarding the initial moments of bacterial adhesion and subsequent biofilm formation.